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Theoretical analysis of the second-harmonic light
power in a biaxial crystal
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Theoretical analyses are presented on the critically phase-matched second-harmonic generation (SHG) in
a biaxial crystal with the focused fundamental Gaussian beams. The dependence of the second-harmonic
light power on the phase matching conditions, focused geometries, walk-off effects, and absorptions are
discussed in detail. Expressions are presented for calculating the light power of the types I and II SHGs
in the biaxial crystal, applied to optimize the blue light generation with the LiB3O5 crystal. A maximum
conversion efficiency of around 37% is obtained with 798-nm laser power of 500 mW.
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Second-harmonic generation (SHG) of light has numer-
ous important applications in nonlinear optics[1−4], aside
from being a highly efficient way to generate the blue
and green lasers for studies in the field of precision
spectroscopy, atom cooling and trapping, and quantum
optics[5,6]. Theoretical works have been done on the opti-
mization of SHG with the focused fundamental Gaussian
beam in a uniaxial nonlinear crystal[7,8]. These works
have been extended to type I SHG with elliptical fun-
damental Gaussian beams[9]. Biaxial nonlinear crystals
that have higher damage threshold, broader transparency
range, and relatively larger effective nonlinear coefficients
are also frequently used in SHG. As opposed to a uniax-
ial crystal, the situation in a biaxial crystal, in which
the three crystal axes have different refractive indices is
more complex and has many configurations[10,11]. Like-
wise, the walk-off angles are different depending on the
angular coordinates in the critical direction. However,
all these configurations in a biaxial crystal can be cate-
gorized in two: type I and type II SHGs[12]. Studies have
been done on the phase-matching conditions and dou-
ble refraction walk-off angles of SHG in a biaxial crystal.
Kerkoc et al. have made the corresponding extensions of
the former theory of SHG in a uniaxial crystal with fo-
cused fundamental Gaussian beams to include a biaxial
crystal—MBANP[13].

However, the previous analyses generally referred to
specific experimental situations. Hence, a comprehen-
sive study of critically phase-matched SHG in a biaxial
nonlinear crystal is highly important. In this letter, we
extend the theory further for the analyses of types I and
II SHGs with the focused fundamental Gaussian beams
in biaxial crystals. The treatment presented here leads
to the results of general significance as a function of the
crystal parameters, from which optimally focused geome-
tries can be found and theoretical estimation of the SHG
power can be made. As an example, we apply the re-
sult to optimize the SHG of a diode laser at 798 nm in a
LiB3O5 (LBO) crystal.

We followed the notations of the classic paper of Boyd
and Kleinman (BK)[7] in the calculations but presented

our results in SI units. The biaxial nonlinear crystal
with the length l was cut to satisfy the ordinary phase
matching condition ∆k=2k1–k2=0, where the wave vec-
tor of the fundamental (second harmonic, SH) light is
represented by k1(k2). In type I SHG, the two funda-
mental waves have parallel polarizations. According to
the theory of Brehat et al.[12], type I SHG in a biax-
ial crystal in laboratory coordinates can be generalized
as the configuration shown in Fig. 1; the relationship
between the laboratory axes (x, y, z) and the crystallo-
graphic axes (X, Y, Z) can be found in Ref. [14]. The
light propagation direction is along the z axis, and its
origin is at the crossing point of the light beam and the
front facet of the nonlinear crystal. The double refraction
angle for the fundamental (SHG) extraordinary waves
is dx/dz=tanρω ≈ ρω (dy/dz=tanρ2ω ≈ ρ2ω) (Fig. 1).
The fundamental beam is a Gaussian beam with a focus
of z = f characterized by the beam waist w0, confocal
parameter b, and diffraction half-angle δ0. These sat-
isfy the relations w2

0k1 = b and δ0=2w0/b=2/(bk1)1/2.
Therefore, the electric field of a fundamental light beam
propagating in the crystal like an extraordinary beam
can be written as[7]

Eω(x, y, z) = E0(1 + iτ)−1 exp(ik1z − iω1t)

× exp
{
− [x− ρω(z − f)]2 + y2

w2
0(1 + iτ)

}

× exp
(
−1

2
a1z

)
, (1)

where τ=2(z–f)/b, E0 is a constant, and a1 and ω1 are
the absorption coefficient and the angular frequency of
the fundamental field, respectively.

We then calculated the SH field E2ω(x1, y1, z1) at the
observer point P (x1, y1, z1). The walk-off of the funda-
mental field has been taken into account in Eq. (1). The
relationship between the source point R(x, y, z) and the
observer point P (x1, y1, z1) are y = y1 − ρ2ω(z1 − z),
(z1 < l); y = y1− ρ2ω(l− z), (z1 > l); x = x1, (0≤ z ≤ l)
(Fig. 1). Then, the electric field of the SH light at the
observer point outside the crystal is
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E2ω(x1, y1, z1) =
iω1dE2

0

cn2(1 + iτ ′)
× exp(−a2l/2 + 2ik1z1 − 2iω1t)

×
l∫

0

dz
exp(−az + i∆kz)

1 + iτ
exp

{
−2

[x1 − ρω(z − f)]2 + [y1 − ρ2ω(l − z)]2

w2
0(1 + iτ ′)

}
, (2)

where a2 is the absorption coefficient for the SH light in
the crystal, d is the effective nonlinear coefficient, a = a1–
a2/2, and τ ′ = 2(z1 − f)/b.

The intensity of the SH light in the far field (τ ′ →∞)
outside the crystal is

I =
1
2
ε0cn2|E2ω|2 =

8P 2
1 d2ω2

1k2
1

ε0c3n2
1n2τ ′2

exp(aµl)

× exp(−a′l)× exp[−4(s2 + s′2)]|H|2, (3)

where s = x1/(w0τ
′), s′ = [y1 − ρ2ω(l − f)]/(w0τ

′), a′ =
a1 + a2/2, the focal position is µ = (l − 2f)/l, and

H =
1
2π

ξ(1+µ)∫

−ξ(1−µ)

dτ
exp(−κτ + iσ′τ)

1 + iτ
. (4)

In the above, σ′ = σ−4(β1s−β2s
′), the phase mismatch-

ing parameter σ is defined as σ = b∆k/2, the focusing
parameter ξ is defined as ξ = l/b, and κ = ab/2.

By integrating the SHG intensity, the SH light power
can be written as

P2ω =
2P 2

1 d2ω2
1

ε0c3n2
1n2π

k1l exp(−a′l)× h(σ,B, κ, ξ, µ), (5)

where the BK factor is

h(σ,B, κ, ξ, µ) =
1
4ξ

exp(µal)
∫ ξ(1+µ)∫

−ξ(1−µ)

dτ ′dτ

· exp[−κ(τ + τ ′) + iσ(τ ′ − τ)−B2(τ ′ − τ)2/ξ]
(1 + iτ ′)(1− iτ)

. (6)

In the above, B2 = B2
1 + B2

2 . The double-refraction
parameter B1 (B2) is defined as B1=ρω(lk1)1/2/2 (B2=
ρ2ω(lk1)1/2/2). The double refraction parameter (B) in
the type I SHG consists of two terms (B1, B2) because
two extraordinary axes exist in the biaxial crystal, and,
in contrast, just one extraordinary axis exists in the uni-
axial crystal, as shown in Eq. (5). For type I SHG in a

negative (positive) uniaxial crystal, in which the double-
refraction parameter B = B2 (B = B1), the result agrees
with that presented in Ref. [7].

According to the phase-matching theory, fundamental
waves are formed by orthogonally polarized lights (Eω

and E′
ω) in type II SHG. The configuration of the type II

SHG in the biaxial crystal can be generalized and are pre-
sented in Fig. 2[12]. The beam propagation directions are
along the z axis. The double refraction directions for the
fundamental waves are dx/dz=tanρ1 ≈ ρ1 and dy′/dz=
tanρ2 ≈ ρ2. For the SHG wave, it is dy/dz=tanρ2ω=ρ2ω.

In type II SHG, the fundamental electric field is
composed of two orthogonally polarized components
(Eω, E′

ω). In Fig. 2, the fundamental electric fields
(Eω, E′

ω) in the crystal can be expressed as

Eω(x, y, z) = E0(1 + iτ)−1 exp(ik1z − iω1t)

× exp
{
− [x− ρ1(z − f)]2 + y2

w2
0(1 + iτ)

}

× exp
(
−1

2
a1z

)
, (7a)

and

E′
ω(x, y, z) = E0(1 + iτ)−1 exp(ik1z − iω1t)

× exp
{
−x2 + [y + ρ2(z − f)]2

w2
0(1 + iτ)

}

× exp
(
−1

2
a1z

)
, (7b)

Then, the electric field of the SH light at the observer
point P (x1, y1, z1) in type II SHG is calculated. As the
two fundamental fields have different polarizations, we
assume two source points (R1, R2) as shown in Fig. 2.
At the same time, the walk-offs of the fundamental fields
have been taken into account in Eq. (7). Therefore, the
observer point P (x1, y1, z1) and the source points R1(x,
y, z) and R2(x, y, z) satisfy y = y1−ρ2ω(z1−z), (z1 < l);
y = y1 − ρ2ω(l − z), (z1 > l); x = x1, (0≤ z ≤ l). The
electric field of the SH light outside the crystal is

E2ω(x1, y1, z1) =
iω1dE2

0

cn2(1 + iτ ′)
× exp(−a2l/2 + 2ik1z1 − 2iω1t)×

l∫

0

dz
exp(−az + i∆kz)

1 + iτ

× exp

{
− [x1 − ρ1(z − f)]2 + [y1 − ρ2ω(l − z)]2 + x2

1 + [y1 − ρ2ω(l − z) + ρ2(z − f)]2

w2
0(1 + iτ ′)

}
. (8)

Therefore, the SH power in the far field (τ ′ →∞) outside
the crystal is

P2ω =
2P 2

1 d2ω2
1

ε0c3n2
1n2π

k1l exp(−a′l)× h(σ,B, κ, ξ, µ). (9)

Here, B2 = B2
3+B2B3+B2

2/4+B2
1/4. The double re-

fraction parameters are defined as B1 = ρ1(lk1)1/2/2,

B2 = ρ2(lk1)1/2/2, and B3 = ρ2$(lk1)1/2/2. As can be
seen from Eq. (9), the double-refraction parameter B
in the type II SHG is more complicated than that in
the type I SHG. The difference is caused by the different
double refraction directions of the orthogonally polarized
fundamental waves in type II SHG.

To realize Yb lattice clock, it is essential that 399 nm
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Fig. 1. Type I phase-matched SHG in a biaxial crystal in lab-
oratory coordinates (x, y, and z). sω (s2ω) is the energy flow
direction of the fundamental (SH) wave, ρω (ρ2ω) is the walk-
off angle of the fundamental (SH) wave, R (P ) is the source
(observer) point, k1 is the propagation direction of the funda-
mental light, and f is the focus of the fundamental Gaussian
beam.

Fig. 2. Type II SHG in a biaxial crystal in laboratory coor-
dinates (x, y, and z). sω, s′ω, and s2ω are the energy flow
directions of fundamental fields Eω and E′

ω, and SHG field
E2ω, respectively; R1 and R2 are the source points; P is the
observer point; ρ1, ρ2, and ρ2ω are the corresponding walk-off
angles; and f is the focus of the fundamental Gaussian beam.

1S0−1P1 broad line transition is used to cool and trap
Yb atoms[15−17]. The PPKTP and LBO crystals are the
possible candidates for generating a 399-nm laser. Villa
et al. have achieved high-efficient blue light generation
with PPKTP[6]; however, thermal lensing and bistabil-
ity appeared in the experiment when the fundamental
power surpassed 300 mW. The LBO widely used for blue
and green light generation is a typical biaxial crystal.
Compared with the PPKTP crystal, it has higher opti-
cal homogeneity, higher damage threshold, and broader
transparency range resulting in low loss for both the
399- and 798-nm laser lights. Therefore, we adopted fre-
quency doubling of a diode laser using the LBO crystal
to generate light source at 399 nm. To minimize surface
losses, Brewster-cut LBO crystal was used in the design
because of the following advantages: minimum residual
reflections on both facets, larger damage threshold, and
longer lifetime compared with the anti-reflection (AR)
coated LBO crystal[18]. In the following, we applied
the theory to analyze blue 399-nm light generation in a
biaxial crystal. The calculations were performed for a
3×3×12 (mm) crystal.

SHG is the most efficient when it is phase matched. Ac-
cording to the refractive indices in Table 1, the maximum
nonlinearity can be achieved at type I phase matching
with θ=90◦ and ϕ ≈31.9◦[10,11], where θ is the angle be-
tween the wave propagation direction and Z axis, and ϕ
is the angle between the projection of wave propagation
direction in X-Y plane and X axis.

Table 1. Refractive Indices at the Fundamental
Laser Frequency ω (797.822 nm) and the SHG Laser
Frequency 2ω (398.911 nm) in the Crystallographic

Coordinates (X, Y , Z)

λ(nm) nX nY nZ

798 1.569 1.596 1.611

399 1.590 1.619 1.635

Table 2. Optimal Configuration for Efficient SHG
from 798 to 399 nm

θ(deg.) ϕ(deg.) d(pm/V) ρω(mrad) ρ2ω(mrad)

90 31.9 0.712 16.7 31.1

After phase matching, the refractive indices of both
fundamental and SH lights are 1.611, hence obtaining a
Brewster angle of φ=58.17◦. The magnitudes of walk-off
angles are shown in Table 2, and the details of the cal-
culation can be found in Ref. [12]. We will use Eq. (5)
for type I phase-matched SHG in a biaxial crystal in the
following optimizations and calculations.

With the data shown in Table 2, the BK factor in Eq.
(5) can be plotted in Fig. 3. We find that the maximum
value of h(ξ) is 0.101 at ξ ∼1.5, indicating that the op-
timal beam waist of the fundamental beam is around 25
µm. Given the small nonlinearity of the LBO crystal, we
chose to enhance the fundamental field in a four-mirror
ring cavity. Compared with a semi-monolithic resonator,
this configuration can avoid feedback to the laser diode
and manifests low loss[18].

Figure 4 shows that the M1 and M2 cavities are flat
mirrors, and that M3 and M4 are concave mirrors with
the same radius of curvature of Rc. Here, M1 is the
input coupler, M4 is the output coupler, and the length
of the crystal is l. The cavity can be analyzed in terms of
ABCD matrix method[19]. The radius of curvatures of
the two concave mirrors was chosen as Rc=70 mm. Given
that the angle-tuned phase matching and the Brewster-
cut surfaces in the design can cause astigmatism[9,18],
we compensated for this by making the folding angle θ
(as formed by the light ray and the surface normal of
the concave mirror), thereby satisfying the relation Rc

tanθsin θ = l(n2–1)/n3[18], where n is the refractive in-
dex, and θ=14.57◦.

From the theory of Ashkin et al.[20], we learned that the
largest SHG conversion efficiency can be obtained when
the cavity is impedance matched. Mirrors M2, M3, and

Fig. 3. BK factor h for the critically phase-matched SHG as
a function of the focusing parameter ξ.
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Fig. 4. Setup of the ring cavity for the SHG in the LBO crys-
tal. M1, M2, M3, and M4 are the cavity mirrors; Pi is the
input fundamental light power; Pr is the fundamental light
power reflected by the cavity; and Pc is the fundamental light
power inside the cavity.

M4 were selected with a high reflectivity of 99.97% for the
fundamental light, and M4 has a transmission coefficient
of up to 94% for the SH light. Generally, the absorption
at 798 nm is estimated to be a1 ∼0.31%/cm, the ab-
sorption at 399 nm is estimated to be a2 <0.1%/cm[21],
and the crystal loss at fundamental wavelength is around
0.45%[5]. As the output facet of the LBO crystal is
Brewster-cut for 798 nm, the transmissivity of the crys-
tal for 399 nm, tc, is around 80.3%[22]. To achieve the
impedance matching condition, the optimal reflectivity
rm of M1 is around 99.4%; the ratio of the light power in
the impedance matched cavity Pcm to the incident light
power Pi can be represented as[20]

Pcm

Pi
=

1
1− rm

. (10)

Substituting Pcm into Eq. (5), the SHG output power
outside the resonant cavity PSHG becomes

PSHG = KP 2
cmlk1 exp(−a′l) · h(κ, σ,B, ξ)t2tc, (11)

where t2 is the transmission coefficient of the output cou-
pler and K=2ω2

1d2/(ε0c
3n1n2π). We defined the SHG

conversion efficiency η as η=PSHG/Pi.
The SHG conversion efficiency can be estimated from

Eq. (11); through the ABCD matrix, we designed a
resonator with the required waist inside the crystal and
achieved a maximum BK factor h(ξ)=0.101. In the calcu-
lation, the fundamental light power Pi refers to the light
power which is mode-matched into the cavity. Substitut-
ing all the parameters into Eq. (11), blue light generation
of 188 mW at 399 nm could be generated with 500-mW
mode-matched light power at 798 nm, and is equal to a
conversion efficiency of around 37%.

In conclusion, we present a theoretical analysis for
both types I and II phase-matched SHGs in a biaxial
nonlinear crystal. Specific phase-matching conditions,
polarizations of laser beams, and corresponding walk-
off effects are analyzed. As a result, the dependence of
SHG power in the biaxial crystal on these parameters
is clarified. Such an analysis provides a theoretical and
practical guidance for determining the optimum operat-
ing condition and estimation of SHG conversion efficiency
in biaxial nonlinear crystals. As an example, we optimize
the SHG in a typical biaxial crystal in the form of a LBO

crystal. A 188-mW laser light emission at 399 nm could
be efficiently generated with 500-mW mode-matched fun-
damental light power, suitable for cooling and trapping
Yb atoms.
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Hänsch, J. Opt. Soc. Am. B 14, 2010 (1997).

10. M. V. Hobden, J. Appl. Phys. 38, 4365 (1967).

11. J. Q. Yao and T. S. Fahlen, J. Appl. Phys. 55, 65 (1984).

12. F. Brehat and B. Wyncke, J. Phys. B: At. Mol. Opt.
Phys. 22, 1891 (1989).

13. P. Kerkoc, R. T. Bailey, F. R. Cruickshank, and D. Pugh,
J. Opt. Soc. Am. B 15, 438 (1998).

14. M. A. Dreger and J. H. Erkkila, Opt. Lett. 17, 787
(1992).

15. Z. W. Barber, C. W. Hoyt, C. W. Oates, L. Hollberg, A.
V. Taichenachev, and V. I. Yudin, Phys. Rev. Lett. 96,
083002 (2006).

16. S. G. Porsev, A. Derevianko, and E. N. Fortson, Phys.
Rev. A 69, 021403 (2004).

17. C. Y. Park and T. H. Yoon, Phys. Rev. A 68, 055401
(2003).

18. J. Hald, Opt. Commun. 197, 169 (2001).

19. H. Kogelnik and T. Li, Appl. Opt. 5, 1550 (1966).

20. A. Ashkin, G. D. Boyd, and J. M. Dziedzic, IEEE J.
Quantum Electron. 2, 109 (1966).

21. S. P. Velsko, M. Webb, L. Davis, and C. Huang, IEEE J.
Quantum Electron. 27, 2182 (1991).

22. E. Jurdik, J. Hohlfeld, A. F. van Etteger, A. J. Toonen,
W. L. Meerts, H. van Kempen, and Th. Rasing, J. Opt.
Soc Am. B 19, 1660 (2002).


